Synthesis and Properties of Monocyclic Selenophene 1-Oxides

Takashi Umezawa, Yoshiaki Sugihara, Akihiko Ishii, and Juzo Nakayama*

> Department of Chemistry, Faculty of Science Saitama University, Urawa Saitama 338-8570, Japan

Received July 6, 1998

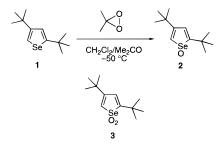
We report here the first synthesis, isolation, and properties of monocyclic selenophene 1-oxides. Thiophene 1,1-dioxides are highly reactive and, hence, both synthetically and theoretically important compounds whose chemistry has been investigated in all of its details.¹ The much more reactive thiophene 1-oxides have eluded isolation until recently,^{2,3} with one exception.⁴ These successful preparations of isolably stable thiophene 1-oxides have subsequently set the stage for the development of their chemistry. Meanwhile, dibenzoselenophene 5-oxide had been the only known oxide of selenophenes⁵ when we started the study on this class of compounds several years ago. After numerous attempts, we have succeeded in the preparation of a series of monocyclic selenophene 1,1-dioxides, which are stabilized electronically or sterically, by oxidation of the corresponding selenophenes with dimethyldioxirane (DMD).^{6,7} However, despite our many efforts, selenophene 1-oxides, the intermediates leading to the former dioxides, have never been isolated in pure form.

2,4-Di-tert-butylselenophene 1,1-dioxide (3) is the most thermally stable of the synthetically available 1,1-dioxides because of steric protection.^{7,8} Since this should also be true for selenophene 1-oxides, 2,4-di-tert-butylselenophene (1)9 was chosen as the substrate for our oxidation study. Thus, a solution of $DMD^{10}\ (1\ equiv)$ in Me_2CO was added to a solution of 1 in CH_2Cl_2 at -50 °C. The addition resulted in rapid oxidation of 1. The mixture was evaporated under vacuum below -40 °C.¹¹ The resulting colorless crystals were washed with a small amount

(2) For a review, see Nakayama, J.; Sugihara Y. Sulfur Reports 1997, 19, 349

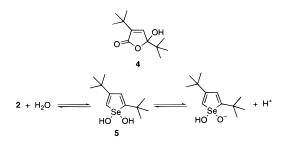
(3) (a) Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310. (b) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. **1994**, 116, 1880. (c) Meier-Brocks, F.; Weiss, E. J. Organomet. Chem. **1993**, 33, 453. (d) Pouzet, P.; Erdelmeier, I.; Ginderow, D.; Mornon, J.-P.; Dansette, P.; Mansuy, D. J. Chem. Soc. Chem. Commun. 1995, 473. (e) Furukawa, N.; Zhang, S.; Sato, S.; Higaki, M. *Heterocycles* **1997**, *44*, 61. (f) Nakayama, J.; Yu, T.; Sugihara, Y.; Ishii, A. *Chem. Lett.* **1997**, 499.

(4) Mock, W. L. J. Am. Chem. Soc. 1970, 92, 7610.
(5) (a) McCullough, J. D.; Campbell, T. W.; Gould, E. S. J. Am. Chem. Soc. 1950, 72, 5753. (b) Dakova, B.; Walcarius, A.; Lambers, L.; Evers, M. Electrochim. Acta 1992, 37, 541. (c) Kimura, T.; Ishikawa, Y.; Minoshima, Y.; Furukawa, N. *Heterocycles* 1994, 37, 541.
 (6) Nakayama, J.; Matsui, T.; Sato, N. *Chem. Lett.* 1995, 485.
 (7) (6) Nakayama J. (1995)


(7) (a) Nakayama, J.; Matsui, T.; Sugihara, Y.; Ishii, A.; Kumakura, S. Chem. Lett. 1996, 269. (b) Matsui, T.; Nakayama, J.; Sato, N.; Sugihara, Y.; Ishii, A.; Kumakura, S. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 118,

(8) Umezawa, T.; Matsui, T.; Sugihara, Y.; Ishii, A.; Nakayama, J. Heterocycles 1998, 48, 61.

(9) Nakayama, J.; Murai, F.; Hoshino, M.; Ishii, A. Tetrahedron Lett. 1988, 29, 1399.


(10) Adam, W.; Hadjiarapoglou, L.; Smerz, A. Chem. Ber. 1991, 124, 227. (11) Removal of the solvents and volatile materials below -40 °C is crucial to isolate 2 in pure form.

of pentane at the same temperature to leave pure 2,4-di-tertbutylselenophene 1-oxide $(2)^{12}$ nearly quantitatively. No formation of the 1,1-dioxide 3 was observed. The 1-oxide 2 is highly hygroscopic and deliquesced on exposure to moist air. It decomposed on warming to liquefy at about 54-55 °C. NMR data of 2 are summarized in Table 1 together with those of 1, 3, and a range of compounds derived from 2. The ¹H NMR

chemical shift values of 2 fall between those of 1 and 3. The same trend is also observed with a thiophene series.^{3f} The ⁷⁷Se NMR spectrum showed only one signal at δ 986 which is lower than the chemical shift values of the common selenoxides.¹³ The IR spectrum showed the Se-O stretching vibration at 798 cm^{-1.14} This assignment was supported by the Raman spectrum in which a strong absorption appeared at 788 cm⁻¹.

The 1-oxide **2** is far less stable than the corresponding thiophene 1-oxide^{3f} and selenophene 1,1-dioxide^{7,8} and decomposed at 20 °C with half-lives of 42 and 34 min in 0.018 and 0.036 M CDCl₃ solutions, respectively.¹⁵ A 0.05 M solution of 2 in CH₂Cl₂ standing at 30 °C for 0.5 h gave 1 (73%), the furanone 4^{16} (25%), and SeO_2 by an unknown process. As is expected from the formation of 1, 2 functions as an oxidizing agent. Thus, letting a 1:1 mixture of 2 and PhSMe stand in CH₂Cl₂ gave PhS(O)Me in 30% yield along with 1 (67%) and 4 (8%). Ph_3P was also oxidized with 2 (1 equiv) to give Ph_3PO in 80% yield. To our surprise, 2 is readily soluble in water, despite the presence of two hydrophobic tert-butyl groups, to give an acidic solution (pH 6.6 for 5.7×10^{-2} M solution) (also easily soluble in MeOH). In addition, it is stabilized by water and persisted in D₂O without marked decomposition at least for 24 h at room temperature. These observations indicate that the Se–O bond is higly polarized, as supported by the foregoing deshielded ⁷⁷Se chemical shift value, and is solvated in water. The acidity of 2 indicates that an equilibrium involving a selenurane 5, which lies to the selenoxide

side, exists in water.17,18

The 1-oxide 2 quantitatively forms a 1:1 adduct $(6)^{12}$ with BF₃ when treated with BF₃•Et₂O (1 equiv) at -40 °C (Table 1).¹⁹ The 1-oxide 2 also quantitatively formed a 1:1 adduct $(7)^{12}$ with p-toluenesulfonic acid (1 equiv) at -40 °C, similar in structure to that of the adduct reportedly formed with dibenzyl selenoxide.²⁰

10.1021/ja982359h CCC: \$15.00 © 1998 American Chemical Society Published on Web 11/11/1998

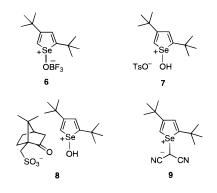

^{(1) (}a) For a review, see Nakayama, J.; Sugihara, Y. In Topics in Current Chemistry (Organosulfur Chemistry), Page, P., Ed.; Springer-Verlag: Heidelberg, to appear in 1999. (b) For the parent thiophene 1,1-dioxide, see Nakayama, J.; Nagasawa, H.; Sugihara, Y.; Ishii, A. J. Am. Chem. Soc. 1997, No. 2007. 119, 9077.

Table 1. ¹H NMR,^{*a* 13}C NMR,^{*b*} and ⁷⁷Se NMR^{*c*} Data (δ) of **2** and Related Compounds

compd	1	2	2^d	2^{g}	3^h	6	7	8	9
С3-Н	6.99	6.67	6.93 ^e	6.92	6.57	6.81	6.72	6.75, 6.77	6.72
C5-H	7.31	6.83	6.94	6.97	6.75	6.98	7.07	7.21, 7.32	6.79
C-2	164.5	170.1	171.2^{e}	170.8	157.6	169.7	168.7	164.0, 164.3	163.8
C-3	123.1	128.1	133.8	130.8	121.2	132.4	128.8	132.4, 132.5	130.9
C-4	153.9	163.1	169.8	166.1	155.6	164.6	164.4	168.55, 168.57	165.7
C-5	118.2	127.3	128.5	128.2	119.0	121.5	125.6	124.8, 124.9	118.0
⁷⁷ Se	552	986	965 ^f		1054^{i}	953-955	959 ⁱ	957, 959	610

^a In CDCl₃ with TMS as the internal standard at 233 K, unless otherwise stated (400 MHz). ^b In CDCl₃ with CDCl₃ (δ 77.0) as the internal standard at 233 K, unless otherwise stated (100 MHz). c In CDCl₃ with the parent selenophene (δ 608.6) as the external standard at 233 K, unless otherwise stated (76 MHz). ^d In D₂O. ^e DSS as the internal standard at 297 K. ^f At 278 K. ^g In CD₃OD with TMS as the internal standard at 297 K. h At 297 K. i In CDCl₃ with D₂SeO₃ (δ 1282) as the external standard. J In CD₃CN at 248 K.

Since the selenium atom of 2 is chiral, optical resolution should be possible provided the inversion on the selenium atom and the well-known racemization process through hydration is slow.^{17,21} As an approach to this goal, 2 was treated with (1S)-(+)-10camphorsulfonic acid (1 equiv). The ¹H NMR of the resulting 1:1 adduct $(8)^{12}$ showed a pair of signals of equal intensities due to the α - and β -hydrogens, revealing the formation of a pair of diastereomers. This conclusion was also supported by ¹³C- and ⁷⁷Se-NMR (observations of two signals at δ 957 and 959) spectra (Table 1), although separation of the diastereomers was impeded by instability of the adduct. Treatment of 2 with malononitrile (1 equiv) at -40 °C in the presence of MgSO₄ gave the selenonium ylide 9^{12} quantitatively, thus providing a new route

to selenophenium ylides.22

(12) Supporting spectral data were obtained for all new compounds. (13) Resonance range of selenoxides is $\delta = 812-941$ except δ 1095 for

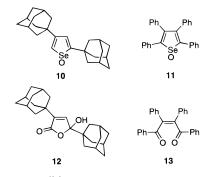
(CF₃)₂SeO.; Duddeck, H. *Prog. Nucl. Magn. Reson. Spectrosc.* **1995**, 27, 1. (14) The ¹⁸O-labeled **2**, which was prepared by treatment of **2** with H_2 ¹⁸O showed the absorption due to the Se⁻¹⁸O stretching vibration at 762 cm⁻¹ See Shimizu, T.; Kobayashi, M.; Kamigata, N. Bull. Chem. Soc. Jpn. 1988,

61, 3761 (15) Kinetics of the decomposition fitted neither first- or second-order in

2 (16) Saito, I.; Yoshimura, T.; Arai, T.; Omura, K.; Nishinaga, A.; Matsuura,

T. Tetrahedron 1972, 28, 5131.

(17) For hydrate formation of selenoxides, for example, see Davis, F. A.; Billmers, J. M.; Stringer, O. D. *Tetrahedron Lett.* **1983**, *24*, 3191.


(18) The absorption due to the Se-O stretching vibration persisted even in the wet (deliquesced) 2.

(19) Thiophene 1-oxides form stable 1:1 complexes with Lewis acids such as BF3 and SbCl5: (a) Hori, M.; Kataoka, T.; Shimizu, H.; Onogi, K. Chem. Pharm. Bull. 1978, 26, 2811. (b) Zhang, S.; Horn, E.; Sato, S.; Furukawa, N. private communication.

(20) Procter, D. J.; Rayner, C. M. Tetrahedron Lett. 1994, 35, 1449.

(21) For a review on preparation of optically pure selenoxides and their racemization, Kamigata, N.; Shimizu, T. J. Org. Synth. Chem. (Japan) **1990**, 48, 229 and many references therein.

Similar oxidation of 2,4-di(1-adamantyl)-^{12,23} and tetraphenylselenophenes²⁴ also gave the corresponding 1-oxides **10**¹² and 11^{12} nearly quantitatively. The 1-oxide 10, which deliquesces on exposure to air and is slightly soluble in water, quickly decomposed at 30 °C in CH₂Cl₂ to give 2,4-di(1-adamantyl)selenophene (85%) and the furanone 12^{12} (12%), whereas 11 gave tetraphenylselenophene (73%) and *cis*-butenedione **13** (25%)

under the same conditions.

Oxidation of thiophenes, including the parent thiophene, is difficult to stop at the 1-oxide stage³ and, therefore, generally affords the corresponding thiophene 1,1-dioxides1 since the oxidation of thiophene 1-oxides, which are no longer aromatic, to the 1,1-dioxides takes place much faster than that of thiophenes to the 1-oxides. By contrast, the present results lead to the conclusion that the oxidation of selenophenes to the 1-oxides is much faster than that of 1-oxides to the 1,1-dioxides. This might be explained by (1) weaker aromaticity of selenophenes compared to thiophenes²⁵ and (2) decreased electron density on the selenium atom because of the highly polarized Se-O bond.

Acknowledgment. This work was financially supported by a Grantin-Aid (No. 09440213) for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available: Characterization data for new compounds 2 and 6-12 and ¹H and ¹³C NMR spectra of 2 and 6-11, ⁷⁷Se spectra of 2, 10, and 11, and IR and Raman spectra of 2 (29 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA982359H

(22) Bien, S.; Gronowitz, S.; Hörnfeldt, A.-B. Chem. Scr. 1984, 24, 253. (23) This new selenophene was prepared according to ref 9

(24) Sawada, K.; Choi, K. S.; Kuroda, M.; Taniguchi, T.; Ishii, A.; Hoshino, M.; Nakayama, J. Sulfur Lett. 1993, 15, 273.
 (25) Bird, C. W. Tetrahedron 1992, 48, 335 and references therein.